Анализ функциональных возможностей систем моделирования электродинамических характеристик морских радиоэлектронных средств

Докладчик: Сергей Николаевич Занкин, АО «ОНИИП»

Постановка задачи

- **Процесс** проектирования и сопровождения современных многофункциональных морских объектов, а также радиотехнических систем для установки на эти объект.
- Вопросы грамотной разработки и оптимального функционирования радиоэлектронных средств (РЭС) локации и связи.
- Задачи электромагнитной совместимости (ЭМС) РЭС и объектовносителей.
- Проблема влияния верхнепалубных сооружений на электродинамические характеристики устанавливаемого там оборудования.

- Именно это положение определяет *необходимость совместного проектирования* и исследования АФУ РЭС и корабля. Ведущую роль в этом процессе играет применение *систем автоматизированного проектирования* (САПР) и электродинамического моделирования электромагнитных процессов ВЧ-СВЧ диапазонов.
- Электромагнитное сопровождение необходимо на всех этапах жизненного цикла технических объектов морского базирования.
- Важна *полнота информации* об электродинамических характеристиках морских РЭС.

На заключительном этапе проектирования морской объект комплектуется:

- либо существующими образцами (информация об электродинамических характеристиках РЭС содержится в паспортах или протоколах испытаний);
- либо проектируемыми или модернизируемыми РЭС (на ранних этапах информация об электродинамических характеристиках содержится в результатах моделирования).

Моделирование электродинамических систем морских РЭС необходимо для:

- анализа соответствия моделей, разработанных образцов антенно-фидерных устройств РЭС заявленным техническим требованиям;
- анализа энергетического потенциала РПДУ;
- анализа чувствительности РПУ;
- оценки объектовой и внутри объектовой электромагнитной безопасности промышленных и биологических объектов;
- оценки внутрисистемной и межсистемной электромагнитной совместимости радиоприемных РПУ;
- оценки электромагнитной стойкости радиоприемных РЭС при воздействии мощных импульсных излучений;
- анализа эффективной поверхности рассеяния (ЭПР) антенных постов.

Основные электродинамические характеристики АФУ РЭС, которые влияют на анализ результатов электромагнитного моделирования на морских объектах.

Антенные устройства	Фидерные тракты
Диаграмма направленности	Входное сопротивление
амплитудная;	активное;
фазовая;	реактивное;
поляризационная	комплексное
Входное сопротивление	Параметры рассеяния
активное;	(S-параметры)
реактивное;	вещественные;
комплексное	мнимые;
	комплексные
Сопротивление излучения	
активное;	
реактивное;	
комплексное	
Параметры рассеяния	
(S-параметры)	
вещественные;	
мнимые;	
комплексные	

Современные вычислительные инструменты моделирования позволяют решать многочисленные задачи, охватывающие широкий диапазон радиочастот, включают в себя обширный набор конструктивных элементов и материалов для проектирования АФУ и верхнепалубных устройств, моделирования электромагнитной обстановки на объектах морского базирования, анализа электродинамических характеристик АФУ РЭС, а примененный математический аппарат позволяет сокращать затраты на проведение натурных экспериментов.

Общая схема проведения расчетов АФУ РЭС на современных системах электродинамического моделирования:

- Построение геометрии модели.
- Определение материалов объектам и свойств средам.
- Задание параметров источников электродинамического воздействия.
- Задание точек, выводов, граней, поверхностей, областей воздействия электромагнитных возмущений и граничных условий.
- Выбор методов расчетов.
- Разбиение выбранных объектов на сетку элементарных ячеек.
- Проведение расчетов.
- Обработка, отображение результатов.
- Сохранение данных и формирование отчетов.

В зависимости от вида и особенностей решаемых задач применяются различные методы расчета.

Характер классификации	Перечень классификации
Область расчета	частотная
	временная
Распределение	ближняя зона
электромагнитного процесса	дальняя зона
	расчет поверхностных токов
	расчет объемных токов
Электрический размер объектов	электрически малые
	электрически средние
	электрически большие
Свойства материалов объекта	проводники
	диэлектрики
	полупроводники
	смешанные (многослойные)
Математический аппарат	точные
	приближенные
	гибридные

Методы, используемые при моделировании

MoM (Method of Moments) – Метод моментов.

Решение уравнений Максвелла в интегральной форме в частотной области. Дискретизируется только интересующая структура, а не свободное пространство, как при решении уравнений для нахождения поля в объеме. Граничные условия требуются. Используемая помять пропорциональна геометрии задачи и частоте. Применяется при решении задач, в которых присутствуют токи в проводниках и диэлектриках. Рассчитывает распределение токов на металлических и диэлектрических структурах и излучения ЭМП в свободном пространстве.

- SEP Принцип эквивалентных поверхностей. Использует понятие эквивалентных электрических и магнитных токов, текущих по поверхности диэлектрического тела конечного размера. Такие тела могут иметь произвольную форму, а их поверхности представляются сеткой с треугольными ячейками. Применяется для поверхностей многослойных сред, разбивая их на конечные элементы.
- VEP Принцип эквивалентного объема (принцип тетраэдрической сетки). Позволяет создавать диэлектрические тела произвольной формы с использованием тетраэдров, как элементарной ячейки объема. Как правило, в этом случае, требуется больше базисных функций, чем в принципе эквивалентных поверхностей, соседние тетраэдры могут иметь различные электрические и магнитные свойства.

FEM (Finite Element Method) – Метод конечных элементов

- Численный метод решения дифференциальных уравнений с частными производными и интегральных уравнений. Суть метода: область, в которой ищется решение дифференциального уравнения, разбивается на конечное число подобластей (элементов). В каждом из элементов произвольно выбирается вид аппроксимирующей функции. Вне своего элемента аппроксимирующая функция равна нулю. Значения функции на границах элементов (в узлах) являются решением задачи и заранее не известны. Коэффициенты аппроксимирующих функций обычно ищутся из условия равенства значения соседних функций на границах между элементами. Затем эти значения выражаются через значения функций в узлах элементов. Составляется СЛУ.
- Применение: моделирование и расчет электрически больших или неоднородных электрических тел; решение задач в частотной области.

MoM/FEM — гибридный метод моментов/конечных элементов

• Заключается в разбиении всего объема области моделирования на тетраэдры, причем ближе к моделируемому объекту создается более плотная сетка. Эффективен при наличии металлических поверхностей и гетерогенных (жидкость) электрических тел.

- MLFMM (Multilevel Fast Multipole Method) Многоуровневый метод моментов, использующий быстрый метод расчета, снижающий требуемые аппаратные ресурсы ЭВМ.
- PO (Phisical Optics) Метод физической оптики используется в случаях расчета электрически больших металлических или диэлектрических структур, основанный на токах, а не на лучах.
- МоМ/РО гибридный метод Моментов/Физической оптики.
- GO (Geometrical Oprtic) Метод геометрической оптики. Основан на технике распространения луча, при котором модели объектов рассчитываются на основе распространения, преломления и отражения оптического луча.
- MoM/GO гибридный метод Моментов/Геометрической оптики.

UTD (Unitform Theory of Diffraction) – Метод однородной теории дифракции

- Современный метод приближенного решения задач рассеяния волн на больших объектах. Поверхность представляется набором плоских многоугольников, имеющих общие ребра. Поле, рассеянное многоугольником, разделяется на две составляющие: геометро-оптическая, порожденная плоской поверхностью и поле, порожденное ребрами. Считается более точным чем метод физической оптики и примерно те же пределы применимости.
- MoM/UTD гибридный метод Моментов/ однородной теории дифракции.

GTD (Geometrical Theory of Diffraction) – Метод геометрической теории дифракции

- Волновое поле представляется в виде суммы полей лучевого типа.
- Дифракционная задача сводится к определению амплитуд и фаз квазилучевых полей из граничных условий.
- Генерация полей лучевого типа происходит на границах раздела сред и на границах «свет-тень».

FDTD (Finite Difference Time Domain) – Метод конечных разностей во временной области.

Один из наиболее популярных методов численной электродинамики, основанный на дискретизации уравнений Максвелла, записанных в дифференциальной форме. Изменение электрического и магнитного поля во времени зависит от изменения соответственно, магнитного и электрического поля в пространстве. В рамках этого метода область пространства и временной интервал подвергаются равномерной дискретизации с заданием начальных условий.

Преимущества:

- простота реализации;
- результат для широкого спектра длин волн получается за один расчет;
- позволяет создавать анимированные изображения распространения волны в счетном объеме;
- удобен при создании анизотропных, дисперсных и нелинейных сред;
- позволяет непосредственно моделировать эффекты на отверстиях, так же как и эффекты экранирования, причем внутри поля и вне экрана могут быть рассчитаны как напрямую так и нет.

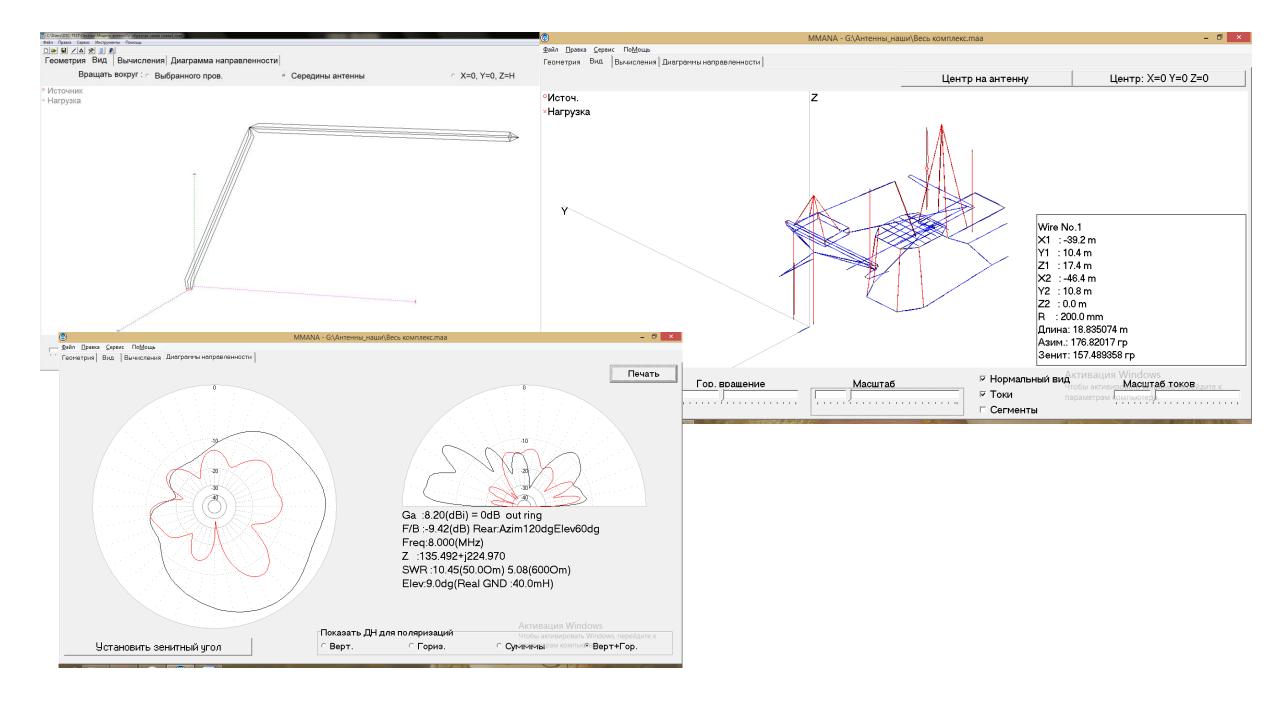
FIT (Finite Intergation Technique) – Метод конечных интегралов.

- Обеспечивает достаточно общий подход, который сначала описывает интегральные уравнения Максвелла на пространственной сетке, с учетом закона сохранения энергии, затем по ним формирует систему специфических дифференциальных уравнений (волновых, Пуассона).
- Отличается своей универсальностью, поскольку может быть реализован как во временной, так и в частотной области моделирования.
- Не накладывает ограничений на тип используемой сетки дискретизации пространства: поддерживает также не ортогональные сетки

- DGTD (Discontinuous Galerkin Time Domain) Дискретный метод Галеркина. Применяется для решения задач с импульсным источником возбуждения.
- PBA (Perfect Boundary Approximation) Идеальное граничное приближение. Метод аппроксимации для идеальных граничных условий, для улучшения моделирования объемных структур произвольной геометрической формы
- FE-BI (Intergal Eguation Method Solve) Метод интегральных уравнений
- SBR (Shooting and Bouncing Ray) Падающий и отраженный лучи
- MEC (Method of Equivalent Currents) Метод эквивалентных токов
- PTD (Physical Theory of Diffraction) Физическая теория дифракции
- ITD (Instrumental Theory of Diffraction) Инструментальная теория дифракции
- MTL (Method of Telegraph Lines) Метод линии передач
- MAS (Method of Auxilaru Sources) Метод вспомогательных источников

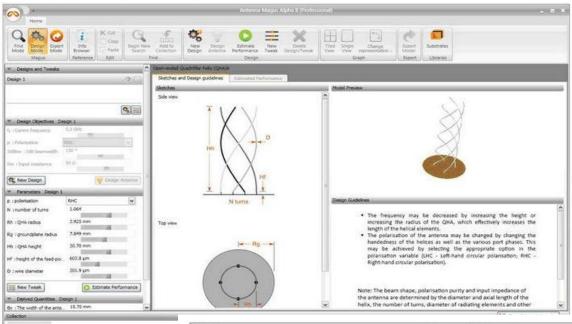
Большая часть систем электромагнитного моделирования представляет собой:

- универсальные пакеты моделирования;
- узкоспециализированные пакеты для антенных и фидерных устройств определенного типа.

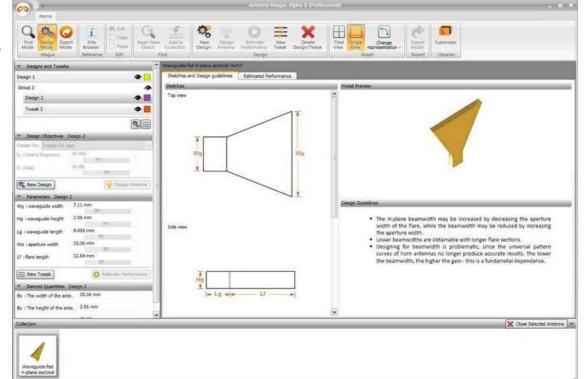

Классифицируем численные методы и варианты их комбинирования в зависимости от

- уровня сложности;
- электрических размеров анализируемых объектов.

MMANA


Программа позволяет:

- создавать и редактировать описание антенны из отрезков заданной толщины как координатами, так и мышкой;
- рассчитывать диаграммы направленности (ДН) антенн в вертикальной и горизонтальной плоскостях;
- одновременно сравнивать результаты моделирования нескольких антенн;
- редактировать описание каждого элемента антенны, включая возможность менять форму элемента без сдвига его резонансной частоты;
- редактировать описание каждого провода антенны, просчитывать комбинированные провода;
- оптимизировать антенну, гибко настраивая Zвх, КСВ, усиление, F/B, минимум вертикального угла излучения, отображая эти параметры в виде графиков;
- сохранять все шаги оптимизации в виде отдельной таблицы;
- автоматически рассчитывать несколько типов СУ;
- выполнять расчет катушек, контуров, СУ на LC элементах, СУ на отрезках длинных линий, индуктивности и емкости, выполненные из отрезков коаксиального кабеля.



Программа Antenna Magus компании Magus (ЮАР).

- Содержит обширную базу данных по более чем 250 видам антенных и фидерных устройств, разрабатываемым по заданным параметрам усиления, полосы пропускания и ширины диаграммы направленности, причем для того или иного параметра синтезируется оптимальная конфигурация выбранного вида устройства.
- Алгоритмы разработки антенн проходят серьезные испытания и процедуры верификации для подтверждения их корректности в соответствии с широким набором технических требований антенн. В дальнейшем программа строит 2D и 3D графики электродинамических характеристик.
- После получения необходимой конфигурации устройства, созданную модель можно экспортировать в программное обеспечение Feko, CST MWS.

Magus Development: Antenna Validation Document

Antenna Validated: Wire (Quadrifilar Helix Short-Circuited Ground-Plane)

Antenna Characteristics:

Parameters
Number of Turns
Helix Radius
Ground-Plane Radius
Helix Length
Feed Height
Wire Diameter

Objectives
Centre Frequency
Polarization
Beamwidth
Input Resistance

Approach:

- Fixed frequency and polarization various impedance and beamwidth combinations.
- . Fixed impedance and beamwidth change frequency and polarization independently.

Interest:

- High / low impedances
- High/low beamwidths

Expectations:

- Centre Frequency: within ±5%
- Polarization: LHC = -1; RHC = 1 axial ratio at centre frequency on main beam axis.
- Beamwidth: within ±5%
- Input Resistance: S11 at resonance below -15 dB.

PRE Validation Method:

Used 16 batch files were used to launch the simulations on the cluster. The batch files were setup as follows:

Batch 1: RHC. Use 6 values for each objective between min and max. The polarization was kept constant. Batch 2: LHC. It was decided to simulate 4 LHC cases randomly.

Validation Results:

The results show that both polarizations passed the validation criteria.

• В соответствии с актуальностью совместного проектирования АФУ РЭС и верхнепалубного окружения морских объектов рассмотрим ряд программных средств, позволяющих моделировать электродинамические процессы на электрически больших объектах для широкого диапазона радиочастот. В нашем случае это морские объекты и авиационные объекты морского базирования.

CST MICROWEVE STUDIO (CST MWS) компании CST (Германия)

Предназначение:

- численное моделирование трехмерных высокочастотных устройств (антенн, фильтров, ответвителей мощности, планарных многослойных структур);
- анализ проблем целостности сигналов и электромагнитной совместимости РЭС во временной и частотной областях с использованием прямоугольной или тетраэдральной сеток разбиения.

Моделируемые устройства:

- волноводные и микрополосковые направленые ответвители мощности;
- делители и сумматоры мощности;
- волноводные, микрополосковые и диэлектрические фильтры;
- одно- и многослойные микрополосковые структуры;
- линии передачи;
- коаксиальные и многовыводные соединители;
- коаксиально-волноводные и коаксиально-полосковые переходы;
- оптические волноводы и коммутаторы;
- различные типы антенн: рупорные, спиральные, планарные.

Применяемые методы:

РВА (метод аппроксимации для идеальных граничных условий);

FDTD (метод конечных разностей во временной области);

FEM (метод конечных элементов).

Вычислительно ядро во временной области (Time Domain Solver).

Расчет характеристик электромагнитных устройств в широком диапазоне частот с высокой разрешающей способностью по частоте;

снижение вероятности потерь острых резонансных пиков.

При наличии у устройства нескольких портов, каждый из них может возбуждаться собственным сигналом.

Описание сигналов и материалов могут храниться в базе данных.

Возможность введения в проект так называемых внутренних портов, необходимых для возбуждения антенн типа «волноводный канал».

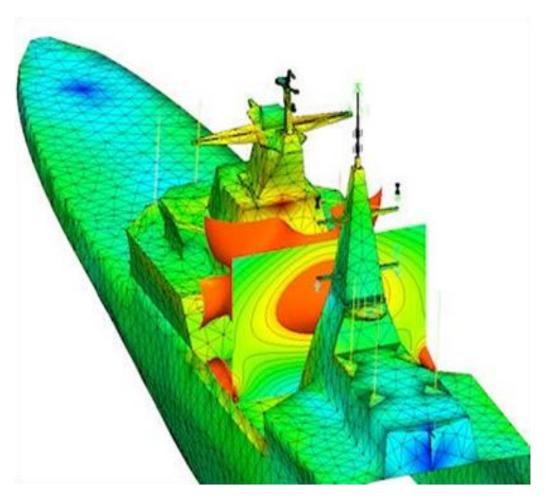
Для анализа материала с ярко выраженными дисперсионными свойствами, используются модели Дейбая (Debey), Друда (Drude) и Лоренца (Lorentz).

- Для широкополосных расчетов, использующих периодические граничные условия, вместо фазового сдвига для описания направления может использоваться геометрический угол сканирования. Особое внимание уделено вычислению мод в портах устройства, который поддерживает материалы с потерями.
- Floquet периодический вычислитель мод в граничных портах, обеспечивающий высокую точность для широкого диапазона углов излучения, что необходимо для расчета фазированных антенных решеток.
- Возможность задания фронта волны через набор периодических граничных портов, позволяет рассчитать облучение поверхности с частотно-избирательными свойствами (FSS) под любым углом.
- Механизм распределенных вычислений на несколько компьютеров в рамках локальной сети.

Программа FEKO

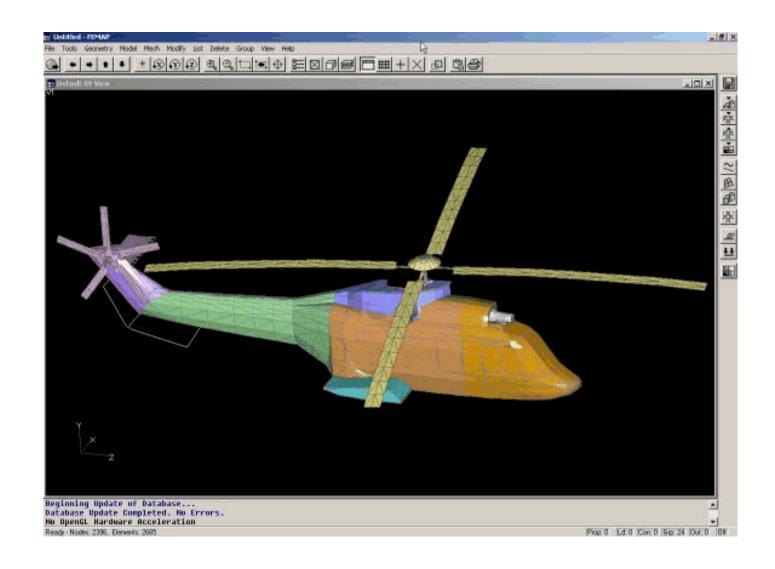
- Производитель: компания Altair Development (ЮАР).
- Позволяет решать целый спектр задач по оценке электромагнитных полей (ЭМП) на кораблях и других объектах, включая ЭМС и электромагнитную безопасность промышленных и биологических объектов

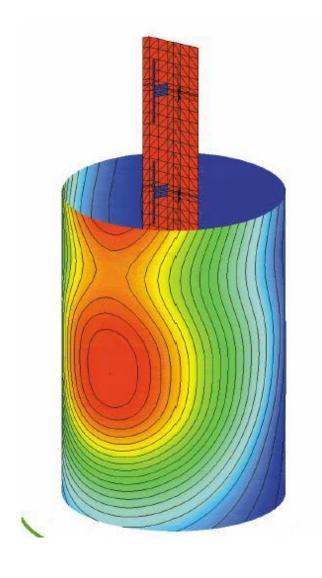
Области применения FEKO


- антенная техника: анализ рупорных, микрополосковых, проволочных, рефлекторных, конформных, широкодиапазонных антенн и антенных решеток;
- размещение антенн: расчет диаграмм направленности, опасных зон и др. параметров и характеристик для антенн, расположенных на объектах сложной формы, например, на кораблях, самолетах, бронемашинах;
- электромагнитная совместимость: анализ различных аспектов электромагнитной совместимости, включая эффективность экранирования корпусом, межкабельное прохождение сигналов при сложных граничных условиях, например, для автомобильной проводки, анализ вредных факторов электромагнитного излучения;

Области применения FEKO

- электромагнитное моделирование в биологии: анализ однородных и неоднородных тел, расчет удельной поглощенной мощности (SAR);
- радиочастотные компоненты: анализ волноводных структур, в частности, фильтров, щелевых антенн, направленных ответвителей;
- трехмерные электромагнитные цепи: анализ микрополосковых фильтров, ответвителей, индукторов и др.;
- устройства ветрозащиты: анализ многослойных покрытий на геометрически сложных объектах;
- задачи рассеяния излучения большими и малыми структурами.

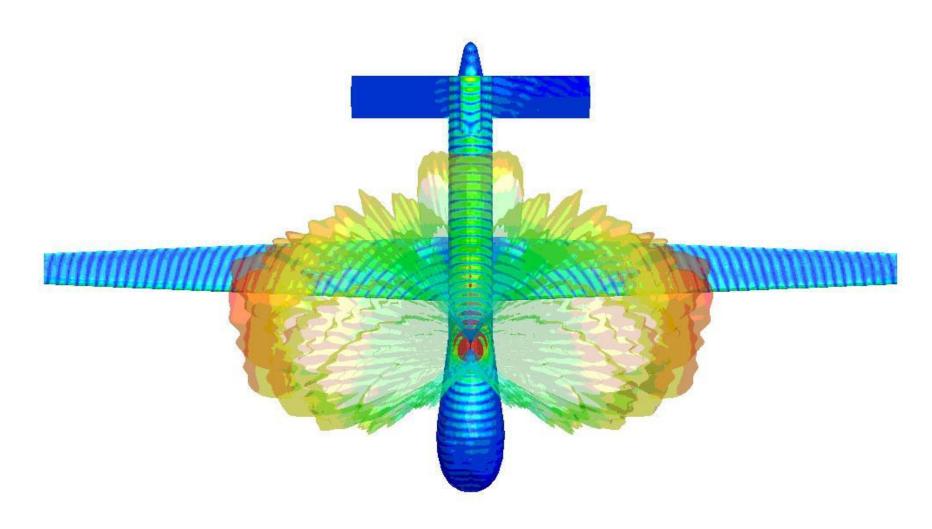

Методы численного анализа FEKO


- MoM рассчитывает распределение токов на металлических и диэлектрических структурах и излучения ЭМП в свободном пространстве;
- FEM;
- MoM/FEM;
- MLFMM многоуровневый метод моментов;
- РО метод физической оптики;
- MoM/PO;
- MoM/GO;
- UTD метод однородной теории дефракции;
- MoM/UTD;
- FDTD метод конечных разностей во временной области.

Применение методов в зависимости от решаемых задач

Сложная конфигурация радиолокационной системы и размеры вертолета, значительно больше длины волны, требует применение нескольких методов расчета антенной системы

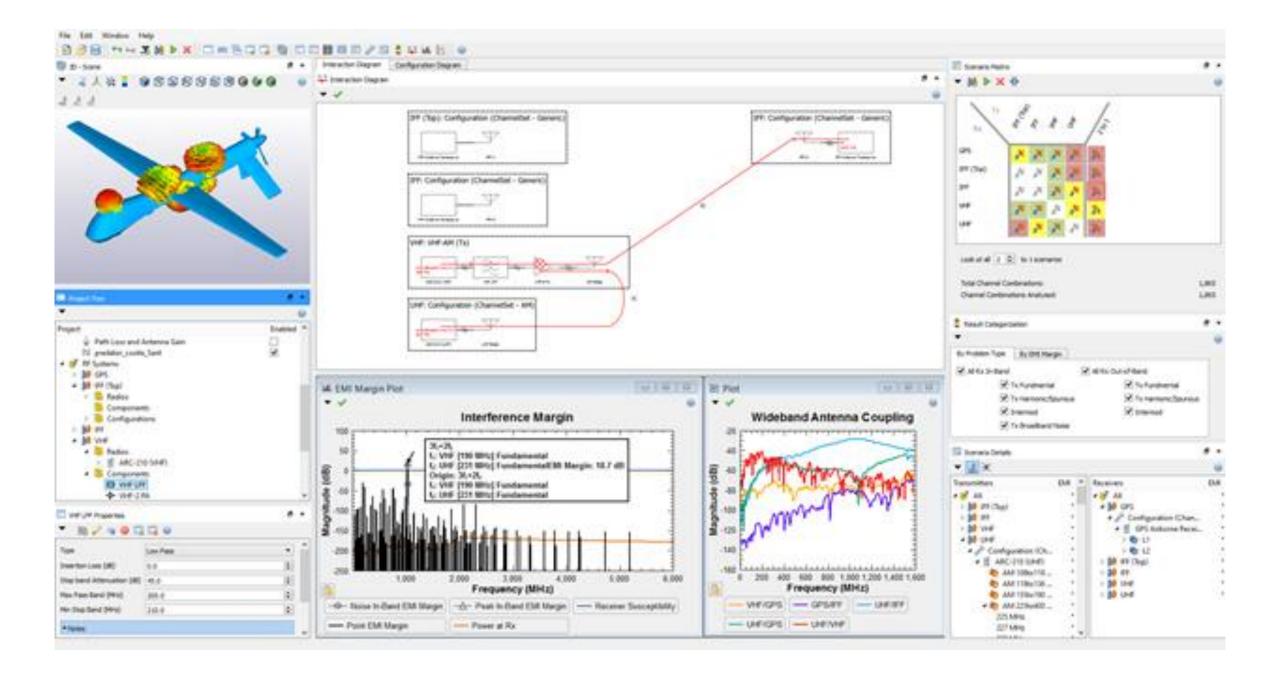
Вычислительные возможности FEKO


- расширенные вычислительные возможности позволяют эффективно моделировать сложные изделия и включают в себя:
- схема расширенной адаптивной частотной интерполяции для эффективного расчета широкополосного отклика;
- эффективный вычислительный децентрализованный вычислительный модуль (есть возможность параллельных вычислений) для широкомасштабных задач;
- функции Грина для многослойных плоских задач моделирования влияния земли и многослойных диэлектрических подложек;
- различные опции для моделирования диэлектрических объектов (объемные, плоские сетки, аппроксимации для земли, тонких листов, изолированных проводов и др.);
- возможность задания частотно-зависимых параметров материалов: Дебая, Cole-Cole и др.;
- интеграция цепей, заданных в виде SPICE-моделей.

ПО ANSYS HFSS (Ansoft, США)

- Пакет программ ANSYS HFSS отраслевой стандарт для трехмерного электромагнитного моделирования и разработки высокочастотных радиоэлектронных и антенных устройств.
- ANSYS HFSS использует новейшие алгоритмы и методы электродинамического расчета.
- Пользователю предоставляется возможность выбора метода расчета следует использовать в той или иной задаче электромагнитного моделирования. Каждая из вычислительных технологий ANSYS HFSS основана на мощном автоматизированном вычислительном процессе, в котором пользователю требуется задать геометрию, свойства материалов и способ представления результатов.
- На основе этих данных HFSS автоматически сформирует соответствующую сетку разбиения объекта для выполнения быстрого и точного расчета.

Возможности ПО HFSS


- Моделирование трехмерного электромагнитного поля;
- Конечные элементы, описываемые тангенциальными векторами;
- Автоматическое адаптивное создание и уплотнение сетки;
- Расчет S, Y, Z-параметров через трансфинитные элементы;
- Восстановление модели, отказоустойчивые алгоритмы построения сетки при импорте модели из CAD-системы;
- Базисные функции низшего, среднего и высшего порядков;
- прямые и итерационные вычислители матриц;
- Обобщенные многорежимные описания портов;
- Автоматическое назначение управляемых портов;
- Различные случайные источники электромагнитных полей том числе диполи и плоские волны;
- Разработка СВЧ и антенных устройств.

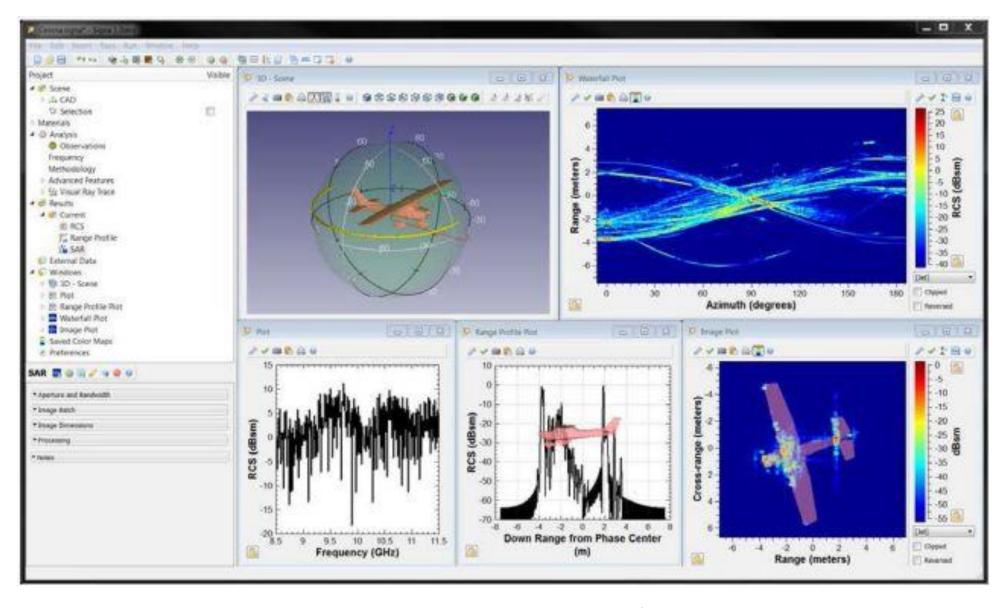
Pacчет ANSYS HFSS пространственного излучения антенны самолета

Методы расчета и вычислители

- ANSYS HFSS Friquency метод конечных элементов для решения задач в частотной области;
- ANSYS HFSS Transient дискретный метод Галеркина для решения задач с импульсным источником возбуждения;
- ANSYS HFSS Hybrid Finite Element Integral Equation Method Solver (FE-BI) метод конечных элементов и метод моментов для получения высокой точности модели излучения антенного устройства;
- HFSS Planar EM планарный EM-вычислитель для проектирования СВЧ интегральных схем;
- Matrix Solver матричный вычислитель для масштабирования процессов вычислений с помощью многоядерных процессов.

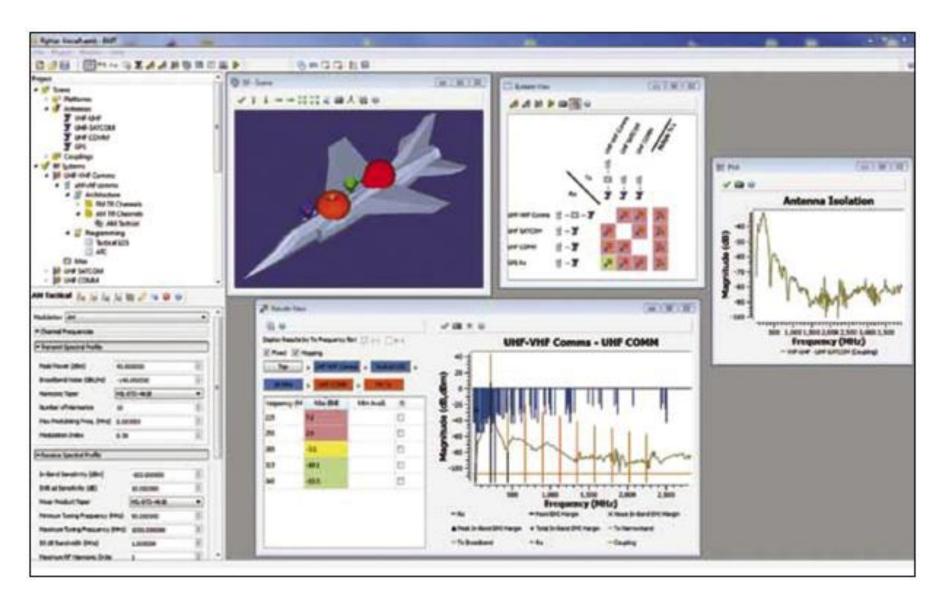
Electromagnetic Professional (EMPro) компании Keysight Eesof EDA (США)

- Программная платформа электромагнитного трехмерного моделирования для анализа объемных электромагнитных эффектов различных электронных компонентов, включая корпуса высокоскоростных и ВЧ микросхем, соединительные провода, антенны, внутрисхемные и внешние пассивные элементы, межсоединения печатных плат.
- Современные средства проектирования, моделирования и анализа, высокопроизводительные технологии моделирования, а так же возможна интеграция в САПР ADS систему обработки ВЧ и СВЧ устройств.

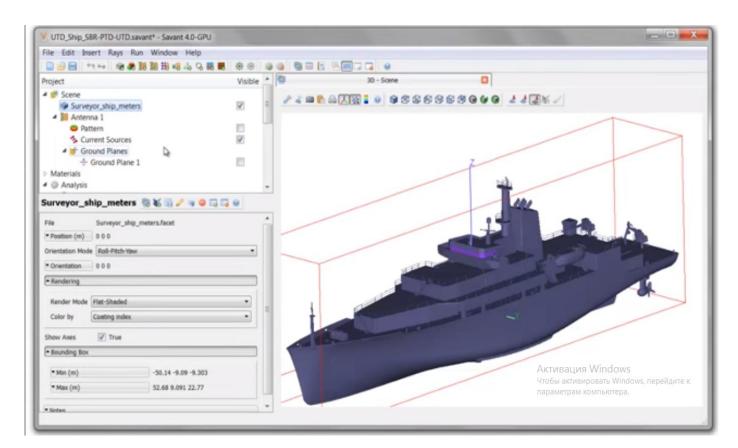

Основные преимущества:

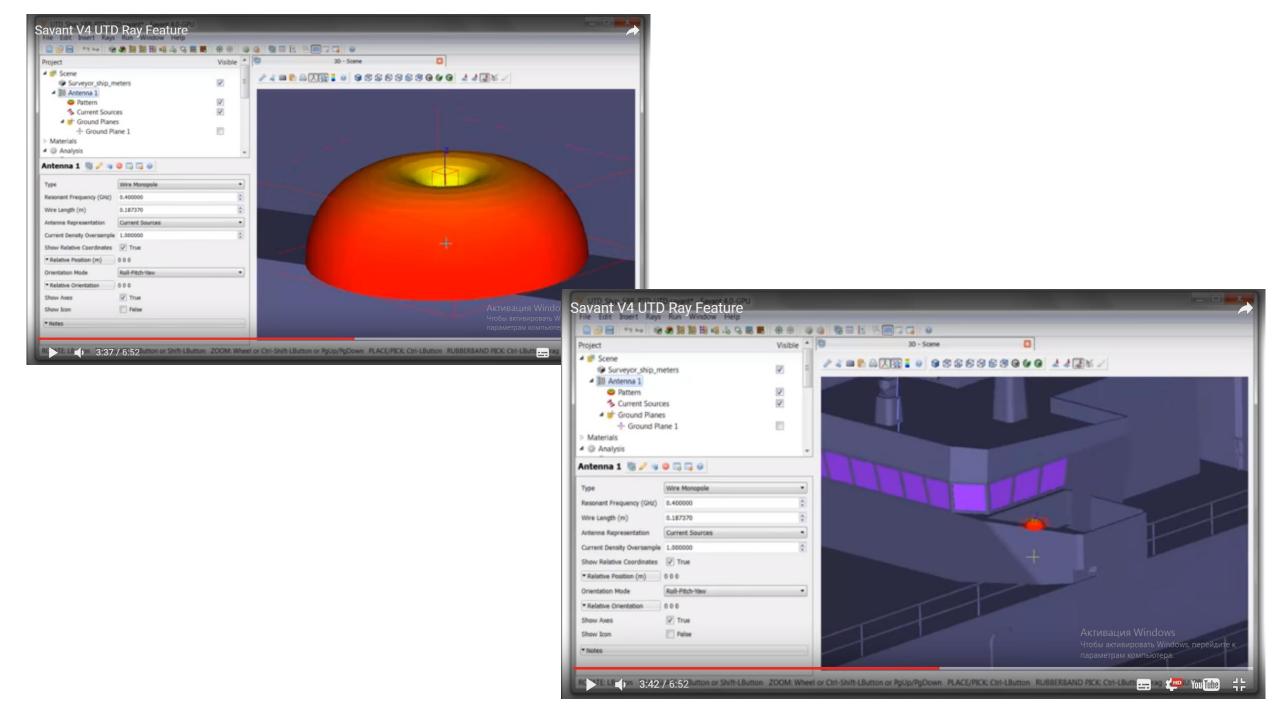
- интеграция маршрута проектирования;
- создание 3D компонентов, которые могут моделироваться совместно с топологиями и схемами средствами САПР ADS при использовании со-симуляции «электромагнитная схема»; широкий набор технологий моделирования;
- настройка и запуск анализа с использованием технологий 3D ЭМ моделирования как в частотной, так и во временной областях;
- удобный конструкторский интерфейс;
- расширенные возможности по созданию скриптов.

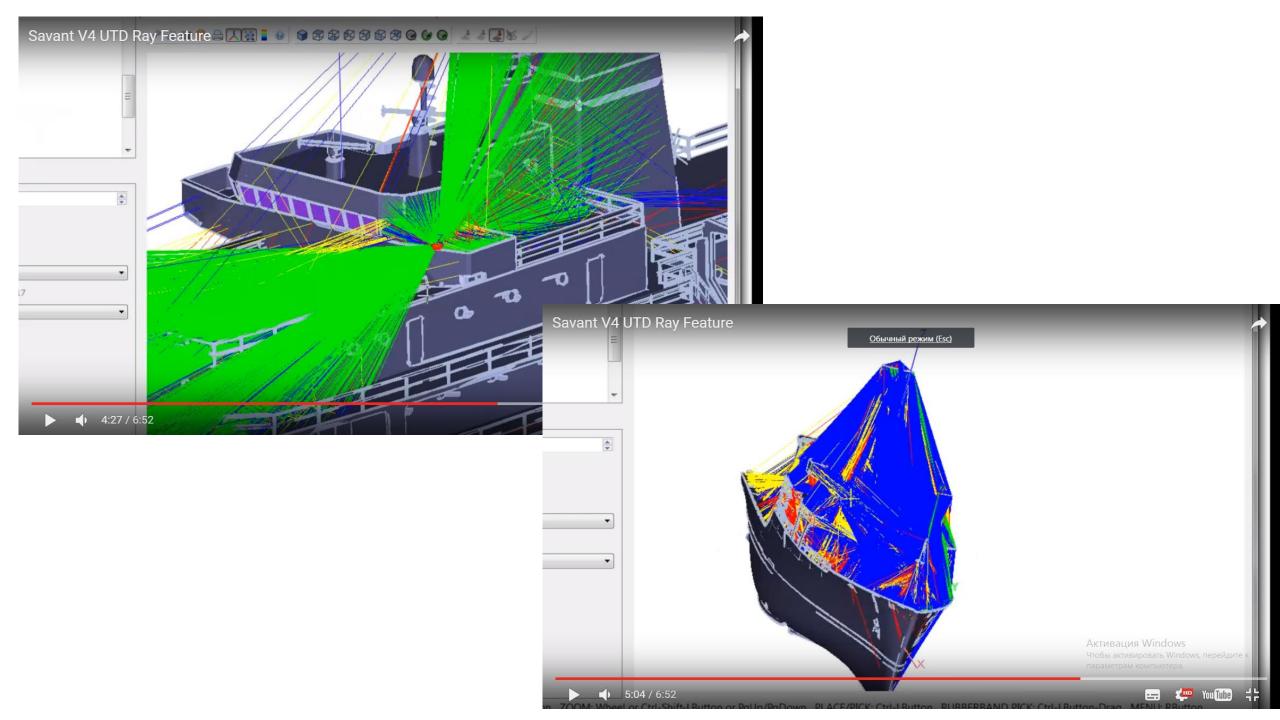
Используемые методы: FEM, FDTD.

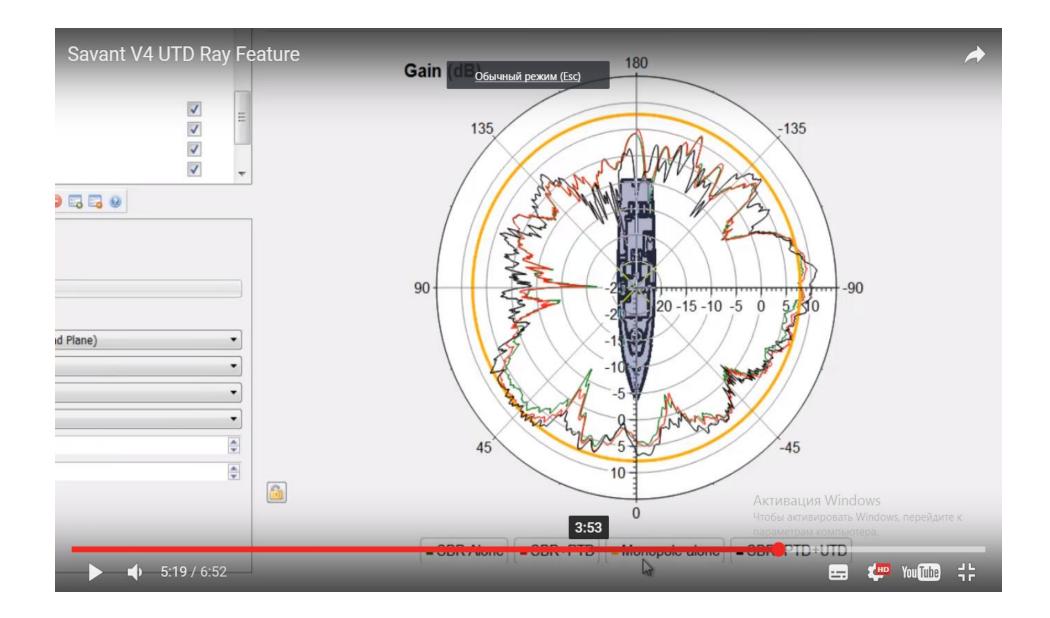

Программный комплекс Signa+Emit+Savant (Delcross Techologies, США)

- Singa ПО для анализа в радиолокационном диапазоне, обеспечивает быстрый и точный прогноз для расчета полей в дальней зоне.
- Возможность генерирования профилей дальности для выявления существенных особенностей рассеяния.
- Графический интерфейс позволяет выбрать типы окон (Хэмминга, Ханна и др.), апертурные размеры, частотные диапазоны и другие параметры для генерации профилей дальности.
- Метод SBR.


Пример расчета ЭПР летательного объекта в ПО Signa


- Emit программное обеспечение, предназначенное для анализа ЭМС РЭС с приближенных моделей.
- Библиотека общих военных и коммерческих видов радиоустройств с представленными характеристиками, в которой можно настроить определенные параметры для конкретной системы и сохранить модель в библиотеке.
- Пост-обработка результатов управляется так, что позволяет быстро идентифицировать первопричину проблем и применить методы для удовлетворения требований к системе.
- Работа с несколькими сценариями, уменьшая и устраняя электромагнитные радиопомехи, изменяя такие параметры как размещение антенн, типы антенн, уровень мощности передачи, добавление фильтров, изменение диапазона частот.



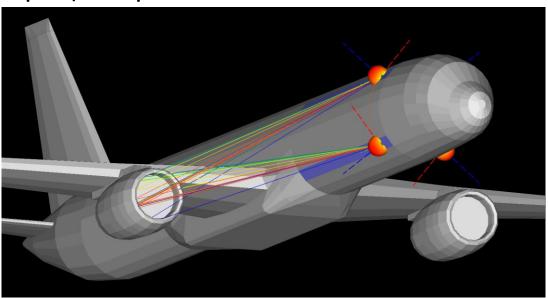

• Пример расчета летательного объекта

- **Savant** программное обеспечение, решающее задачи ЭМС и электромагнитной безопасности на основе методов:
- физической оптики (РО);
- геометрической оптики (GO);
- метода универсальной теории дифракций (UTD)

Программа XGtd компании Remcom

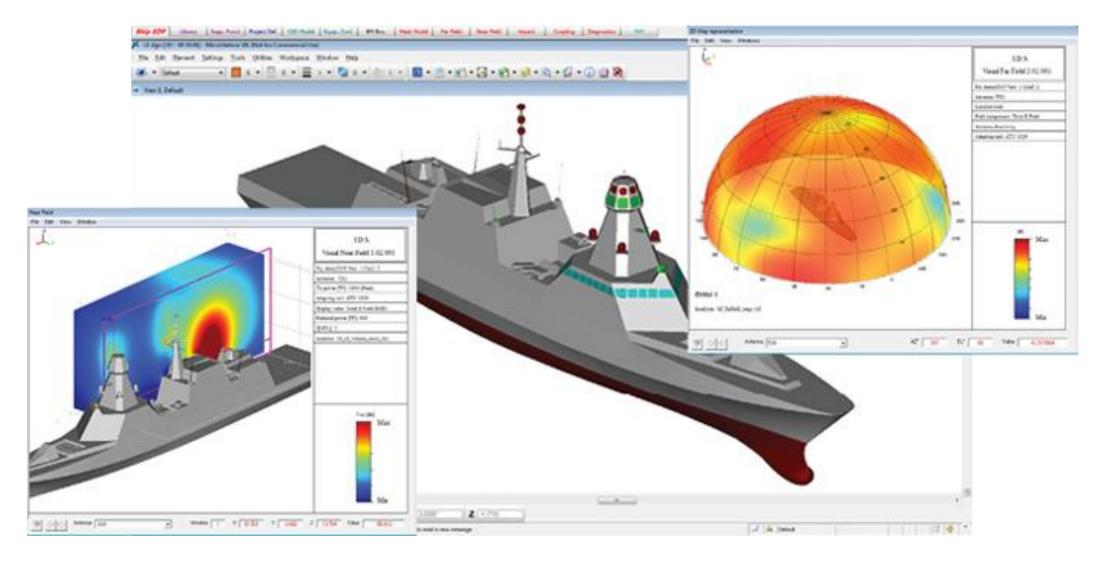
Предназначена для

- высокочастотного электромагнитного моделирования полей дальней зоны и параметров рассеяния;
- анализа электромагнитных излучений и помех, свойств поглощающих материалов на электрически больших объектах.


Расчетное ядро основано на методах: GO, UTD, PO, MEC.

Постобработка программы позволяет визуализировать электромагнитные характеристики в 2D, 2,5D и 3D.

Применение параллельных вычислений на многопроцессорных


системах.

Импорт файлов форматов DXF, STL и SAT.

EDF-EME (IDS, Италия)

- Программная моделирующая среда электромагнитного моделирования кораблей.
- Оперирует трехмерной моделью корабля.
- Позволяет выполнять расчет не только электромагнитной обстановки и уровней ЭМС РЭС, но и проводить оценку электромагнитной безопасности промышленных и биологических объектов, радиоэлектронной заметности корабля, проводя расчет его эффективной площади рассеяния, в том числе с учетом влияния подстилающей морской поверхности.
- Для различных электродинамических задач применяются следующие методы: MoM, MLFMM, UTD/GTD, PO, PTD, ITD, MoM/UTD, MoM/PO.

Результаты расчета парциальных и интегральных электромагнитных характеристик корабля в верхней полусфере

Моделируемые объекты/процессы	Объекты со сложной геометрией			Электрически большие объекты			
Проволочные антенны	Mo M	FEM, FEM/ <u>MoM</u>	FDTD	MLFMM	FEM/ MLFMM	PO, RL-GO, MoM/PO, MoM/GO, MLFMM/PO	UTD, MoM/ UTD
Микрополосковые антенны							
Апертурные антенны							
Рефлекторные антенны							
Антенны с ветрозащитой							
Конформные антенны							
Широкополосные антенны							
Антенные решетки							
Линзовые антенны							
Обтекатели антенн							
Задачи размещения антенн							
(расчет распределения							
излучений)							
Задачи размещения антенн							
(расчет взаимодействия)							
SAR (электромагнитные расчеты для биологических объектов)							
Расчет опасных зон излучения							

Моделируемые объекты/процессы	Объекты со сложной геометрией			Электрически большие объекты			
Проволочные антенны	Mo M	FEM, FEM/ <u>MoM</u>	FDTD	MLFMM	FEM/ MLFMM	PO, RL-GO, MoM/PO, MoM/GO, MLFMM/PO	UTD, MoM/ UTD
Периодические структуры:							
частотно-избирательные							
поверхности, метаматериалы							
Рассеяние плоской волны							
(эффективная площадь							
рассеяния)							
Рассеяние поля от							
сосредоточенного источника							
Электромагнитное							
взаимодействие, интерференция							
и экранирование							
Взаимодействие внутри кабеля							
Волноводные компоненты							
Разъемы							
Микрополосковые цепи							

Выводы

- В настоящее время существует большой список программных средств, позволяющих решать задачи электродинамического моделирования.
- Характер решаемой задачи определяет подходящие математические методы расчета и обуславливает выбор среды моделирования.
- Данный материал может помочь в выборе методов расчета и САПР для решения конкретной прикладной задачи.
- Для полномасштабного электродинамического моделирования морского объекта требуется применять параллельные вычисления с помощью микропроцессорных систем и графических ускорителей.

Благодарю за внимание